Total Resistance in a Circuit

Let's Figure Out the Total Resistance in the Circuits!

Find the total resistance for both **Circuit 1** and **Circuit 2**.

To find the *total resistance* (R_T) in **Circuit 2**, let's find the resistance through R_1 , R_2 and R_3 which are in **parallel**.

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
$$\frac{1}{R_T} = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000}$$
$$\frac{1}{R_T} = \frac{3}{1000}$$
$$\frac{1}{R_T} \approx \frac{1}{333.3}$$
$$R_T \approx 333.3\Omega$$

SULIA

Rev 20230404

SUIA

Rev 20230404

Let's Figure Out the Total Resistance in the Circuits!

Find the total resistance for Circuit 3 below.

Rev 20230404

Let's Figure Out the Total Resistance in the Circuits!

RESISTORS

Total Resistance in a Circuit

Let's Figure Out the Total Resistance in the Circuits! SHOW ALL YOUR WORK!

CIRCUIT 2