Measuring DC Voltage & AC Voltage with a Multimeter

4.545

Where are probes connected to measure Continuity & Resistance on a Multimeter?

TINUITY + RESIS

Voltage, resistance, low current, and continuity, always have the probes plugged into these ports:

red probe \rightarrow V Ω mA port **black probe** \rightarrow COM port

Measuring Continuity

"Continuity" means two points are electrically connected.

Touch the red probe and the black probe to two points on a circuit.

A continuous beep indicates the two points have "continuity". If you don't hear a continuous beep, there is no electrical connection.

You can test this mode by touching the red and black probes together.

Uses for Continuity Test

Measuring Resistance

Set the dial to the resistance (Ω) position.

Touch the red (+) and black (-) probes of the multimeter to either end of a resistor to measure and show its value on the **LCD** or display.

It doesn't matter what ends of the resistor you place the probes on because the resistor has no **polarity**.

Note: To measure resistance in a circuit, be sure to first turn off the power. This will measure the resistance between the two points in the circuit!

Best Dial Position to Measure Resistance

In total, there are *five ranges* on the Ω (**Ohms** or **resistance**) section of the dial of the multimeter:

- $\begin{array}{c} \textbf{2000K} \text{ Measure up to } 2,000,000 \ \Omega \\ \text{Multiply display value by 1K} \end{array}$
- 200K Measure up to 200,000 Ω Multiply display value by 1K
- 20K Measure up to 20,000 Ω Multiply display value by 1K
- 2000 Measure up to 2000 Ω Resistor value shows on display
- 200 Measure up to 200 Ω Resistor value shows on display

Note: Ω is pronounced "ohm" and is the unit used to measure resistance. Zero ohms means a wire has "continuity" and is directly connected.

Measuring Resistance Example

Notice each time the dial is move to a lower range value, the accuracy increases until we reach a range value that is too low (2000 Ω).

Also note for a 10KΩ resistor, we measure only 9.74KΩ. This is low, but in the range for a resistor with 5% tolerance!

Let's see what this looks like with a 10K Ω resistor. First set the dial to the highest range value and work our way down.

